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ABSTRACT: 
Measures must be taken to reduce the stress caused by water scarcity, which 
is the greatest obstacle to increasing the success of afforestation in arid areas. 
Precautions such as site preparation and species change do not ensure sufficient 
benefits. For this, it is necessary to try alternative methods such as using 
mycorrhization of seedlings for afforestation. The aim of the present study was 
to obtain Russian olive (Elaeagnus angustifolia) seedlings with high resistance 
to water stress and ascertain the effects of mycorrhizae on the water potential 
of water- stressed seedlings. Accordingly, we determined the water potentials of 
seedlings inoculated with arbuscular mycorrhizal fungi. Reduction in soil water 
content caused a reduction in the water potential of seedlings in all treatment 
variants. Mycorrhization reduced stress by increasing the water potential of 
seedlings in drought conditions, thereby enhancing their resistance to water 
stress.
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INTRODUCTION 

The most important factor for the success of afforesta-
tion in arid areas is the access of plants to water. Due to 
the low water-retaining capacity of less developed soils, 
the effects of drought vary on a regional basis. Although 
selection of different species, site preparation and var-
ious planting techniques have been tried to achieve af-
forestation in drought-affected fields, the desired suc-
cess could not be accomplished. Apart from these tech-
niques, the use of mycorrhized seedlings, especially in 
conditions where drought stress occurs, increases the 
field performance of seedlings, ensures the success of 
afforestation and reduces the costs (Perry et al. 1987; 
Allen 1991; Kozlowski et al. 1991; Dunabeitia et al. 
2004; Edmonds et al. 2005; Kalefetoglu & Ekmekci 
2005; Toprak 2016). 

Water stress prevents the growth and development 
of plants (Bañon et al. 2004) and reduces resistance to 

disease and pests (Desprez-Loustau et al. 2006; Bos-
tock et al. 2014). Since mycorrhizae have positive effects 
on root biomass and architecture (Toprak 2020a), it 
can increase drought resistance of the plant by taking 
up the water from capillary pores in arid areas. In ad-
dition, mycorrhizae can increase soil water content and 
infiltration due to their effect on soil structure (Berta 
et al. 2002; Klironomos 2003; Gamalero et al. 2004; 
Piotrowski et al. 2004). In experimental conditions, 
the leaf water potential is often higher in mycorrhized 
plants under drought conditions in comparison with 
non mycorrhized controls (Duan et al. 1996; Zarik et 
al. 2016; Budak et al. 2017; Toprak 2020b). However, 
the effects of mycorrhizae on the nutritional status and 
growth performance of deciduous seedlings have been 
studied more often than water relations (Huante et al. 
1993; Rieske 2001; Toprak 2020a). 

Russian olive (Elaeagnus angustifolia L.) is a 
drought-resistant species. It is able to grow in a wide 
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range of climates and soil conditions. It has been shown 
to have arbuscular mycorrhizae (Riffle 1977). It is also 
an actinhorizal species, participating in a nitrogen-fix-
ing symbiosis (Zitzer & Dawson 1992). 

The aim of the present study was to grow water 
stress-resistant Russian olive seedlings and determine 
the effects of mycorrhizae on the water potential of seed-
lings under water stress.

MATERIALS AND METHODS 

Properties of the soil medium. The soil medium used 
to grow seedlings consisted of soil (70%) + peat (20%) + 
perlite (10%). The soil in the medium was obtained from 
Duzce, Turkey. The soil medium was sterilised for 2 h at 
120°C in an autoclave. Initial properties of the non-auto-
claved soil are presented in Tables 1-3. The soil samples 
were air-dried, sieved to obtain a < 2 mm-sized fraction 
and prepared for chemical analysis. Soil texture was de-

termined with the aid of a Bouyoucos hydrometer (Gee 
& Bauder 1986). Acidity was determined with a pH me-
ter (a Hanna-HI 221 microprocessor) and a WTW-Inolab 
(cond level 1) electrical conductivity (EC) meter used 
for electrical conductivity. The total calcite content was 
measured with a Scheibler pressure calcimeter (Loeppert 
& Suarez 1996). All samples were analysed for their C 
and N concentrations by means of dry combustion using 
a LECO Truspec CN-2000 analyser (LECO Corporation, 
St. Joseph, MI, USA), while P, K, Ca, Mg, Fe, Cu, Zn and 
Mn concentrations were determined with an ICP-OES 
instrument (Perkin Elmer Optima 7000 DV). Cation ex-
change capacities (CEC) were determined with NH4OAc 
extracts (Sumner & Miller 1996).

Mycorrhizal mixtures. The commercial mycorrhizal 
mixture (CM) used in the study [RhizoMyx ® (No-
vozymes)] contains arbuscular mycorrhizal fungi and 
some growth regulators (Table 4).

Soil texture OM
%

CEC
me 100 g-1

Total lime
pH

EC

% µS cm-1

Sandy cley loam 1.6 ± 0.1 33 ± 1 2.1 ± 0.4 7.4 ± 0.03 140 ± 1

C N P K Ca Mg

% mg kg-1

1.1 ± 0.1 0.1 ± 0.02 7.2 ± 0.1 78 ± 0.3 6215 ± 94 130 ± 1

Fe Cu Zn Mn

19.7 ± 0.1 3.2 ± 0.02 0.5 ± 0.1 38 ± 0.3

Table 1. Properties of the soil medium used in seedling pots.

Table 2. Macronutrient concentration of the soil medium used 
in seedling pots.

Table 3. Micronutrient concentration (mg kg-1) of the soil medi-
um used in seedling pots.

Arbuscular mycorrhizae (propagule g-1) Inert ingredients %

Glomus intraradices 25 Humic acids 28.70

Glomus mosseae 24 Cold-water kelp extracts 18.00

Glomus aggregatum 24 Ascorbic acid 12.00

Glomus clarum 1 Amino acids 6.00

Glomus monosporum 1 Myo-inositol 2.50

Glomus deserticola 1 Surfactant 2.50

Glomus brasilianum 1 Thiamine 1.75

Glomus etunicatum 1 Aplha-tocopherol 1.00

Gigaspora margarita 1

Table 4. Composition of mycorrhizal mixture [RhizoMyx ® (Novozymes)].
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Indigenous mycorrhizal spores were collected from 
rhizospheres of Russian olive trees in Central Anatolia, 
Turkey. 

Experimental design. A completely randomised design 
(CRD) was used for the experiment. The experiment was 
conducted in a greenhouse at the Duzce University in 
Duzce, Turkey. Russian olive seeds were used for the study.

Seeds subjected to commercial mycorrhizal treat-
ment were dipped in commercial mycorrhizal solutions 
containing 5 grams of inoculum for 5 minutes and then 
removed from the solution. The seeds were sown in each 
of several pots. Two weeks after sowing, solutions of in-
oculums were prepared by applying 1 g of a cocktail per 
100 ml of water and added to the experimental pots. For 
autochthonous inoculum treatment, 500 indigenous my-
corrhizal spores (Funneliformis, Claroideoglomus) per 
pot were used and placed 50 mm below the seeds. Spores 
for this inoculum were collected from rhizospheres of 
Russian olive trees in Central Anatolia, Turkey. Fifty 
seedlings were grown per each treatment [commercial 
mycorrhizae (CM) and indigenous mycorrhizae (IM)]. 
Another 50 seedlings were grown without any treatment 
as a control.

To determine arbuscular mycorrhizal colonisation 
in the roots, root samples were heated in a  10% KOH 
solution at 90ºC for 1 hour. Roots were bleached at room 
temperature and acidified with 1% HCl. After cleaning, 
they were stained with 0.05% trypan blue (800 ml glyc-
erine, 800 ml lactic acid, 800 ml distilled water and 1.2 g 
trypan blue) while being subjected to heating at 90ºC for 
15 minutes (Philips & Hayman 1970; Brundrett et al. 
1996; Utobo et al. 2011). Segments 1 cm long were used 
to evaluate the rate of mycorrhizal colonisation following 
the protocols described by Giovannetti & Mosse (1980).

Measurement of soil moisture and xylem water poten-
tial. Moisture in the pots where seedlings were grown 
was determined with a moisture meter (Fieldscout 
TDR 100 Soil Moisture Meter). Seedlings were irrigat-
ed at weekly intervals until measurement of the water 
potential started in the second week of August. Mid-

Soil moisture

Xylem Water 
Potential

(CM) 0.81 ****

(IM) 0.85 ****

(Control) 0.87 ****

Significance levels are indicated by **** P < 0.0001.

Table 5. Pearson correlation coefficients for xylem water poten-
tial and soil moisture of Russian olive seedlings.

Fig. 1. Relationships between soil moisture and leaf water poten-
tial of Russian olive seedlings in CM (a), IM (b) and control (c).
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day xylem water potentials (Ψp) at the root collar were 
measured during the gradual decrease in soil moisture 
every 3 days. To determine the change in Ψp caused by 
the soil moisture drop, water potentials were measured 
using a pressure chamber (PMS Instruments Company, 
1505D-EXP) in the middle of the day, when soil mois-
ture was simultaneously measured in the pots. The water 
potential of seedlings and soil moisture were measured 
until the seedlings died.

Statistical analysis. The effects of treatments on Ψp were 
tested by analysis of variance (ANOVA). Tukey’s HSD 
test was performed to compare the means. The relation-
ships between soil moisture and Ψp were determined 
using Pearson’s correlation. The results were considered 
different at a significance level of α = 0.05. SAS was used 
for all statistical analyses (SAS 1996).

RESULTS

The seedling roots that were subjected to both IM and 
CM treatments developed arbuscular mycorrhiza, while 
those of the control seedlings were not infected. The col-
onisation level was much higher in IM-treated seedlings 
(~70%) than in CM seedlings (~4%) (P < 0.0001).

Pearson correlation coeficients between Ψp and soil 
moisture are presented in Table 5. Correlation analysis 
demonstrated that Ψp shows a highly supported positive 
correlation with soil moisture in the CM, IM and control 
variants (P < 0.0001). 

It was determined that there was a positive relation-
ship between soil moisture and Ψp of seedlings (R2 0.65, 
0.72, 0.75), and the slope of linear lines was statistically 
significant (P < 0.0001) in the obtained equations in the 
CM, IM and control variants, respectively. The regres-
sion model for estimation of Ψp of seedlings depending 
on soil moisture is given in equations 1, 2 and 3 in the 
CM, IM and control variants, respectively (Fig. 1).

Ψp (bars) = -21.58603 + 0.29184 × soil moisture (%) (1)
Ψp (bars) = -24.44690 + 0.37878 × soil moisture (%) (2)
Ψp (bars) = -28.06600 + 0.48776 × soil moisture (%) (3)

DISCUSSION

Seedling water potential is an important indicator of 
the water status in drought conditions (Elsayed et al. 
2011). Jafarnia et al. (2018) demonstrated that Persian 
oak (Quercus brantii Lindl) seedlings had a reduced xy-
lem water potential when they were exposed to severe 
drought stress. Toprak (2020a) reported that the water 
potential of black locust (Robinia pseudoacacia L.) seed-
lings exposed to drought stress decreases with decreas-
ing soil moisture. The reduced water potential of plants 

under water stress is a physiological response to enhance 
drought resistance. A decrease in the water potential of 
plants due to increased water stress was demonstrated 
in many studies (Giorio et al. 1999; Kirnak & Demir-
tas 2002; Tognetti et al. 2004; Tang & Zhao 2006; 
Boussadia et al. 2008; Cotrozzi et al. 2016, Toprak 
2020b). As in other studies, loss of soil moisture under 
progressive drought in the present study was followed by 
a decrease in Ψp of the seedlings. In all treatments, Ψp 
showed a significant decrease under drought stress.

Arbuscular mycorrhizae provide the host plants with 
more water and some macro- and micro- nutrients, es-
pecially P (Toprak 2020a, b). Previous studies report-
ed that arbuscular mycorrhizae are able to enhance the 
drought tolerance of plants (Augé 2001; Augé & Moore 
2005). It was concluded that inoculation with arbuscular 
mycorrhizal fungi improves the resistance of seedlings 
to water stress by regulating relationships between the 
plant and water (Augé 2001; Lambers et al. 2008; Apple 
2010; Ruiz-Lozano & Aroca 2010). The water poten-
tial of plants was usually higher in arbuscular mycor-
rhizal plants under conditions of water stress (Duan et 
al. 1996; Auge 2004; Birhane et al. 2012; Zarik et al. 
2016) because arbuscular mycorrhizae can alter the wa-
ter relationships of plants (Smith & Read 2008). In the 
present study, it was shown that the Ψp of mycorrhized 
seedlings was higher than those of the control seedlings 
under conditions of about 4% soil moisture (Fig. 1). Ar-
buscular mycorrhizae improved the drought resistance 
of Russian olive. Their effect became more visible with 
an increasing water deficit.

Water stress strongly inhibits seedling growth and 
has an important role in reducing plantation success 
(Livingston & Black 1987). Arbuscular mycorrhizal 
fungi can quickly adapt to soil drought and strongly 
colonise roots. Russian olive is a nitrogen-fixing species 
(Fisher & Binkley 2000; Decant 2008). Since it can 
significantly contribute to the N pool and increase mi-
crobial diversity in the rhizosphere, it should be a good 
candidate to consider for use in afforestation projects to 
reclaim degraded arid lands (Yildiz et al. 2017). 

CONCLUSION

Decrease in soil moisture caused a decrease in the wa-
ter potential of Russian olive seedlings, but mycorrhized 
seedlings at lower soil moisture had a higher water po-
tential. Mycorrhizae reduced the water stress of seed-
lings in drought conditions and increased their resist-
ance to water stress. In addition, Russian olive is known 
to have nitrogen-fixing root nodules, which allow it to 
adapt to infertile soils. In order to ensure success of af-
forestation in arid and semiarid lands, it is necessary to 
slow down the decrease in the water potential of plants 
caused by water deficit and promote processes that will 
enable the water potential to reach higher values at low-
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er soil moisture values. The use of mycorrhized Russian 
olive seedlings can contribute to increasing the success 
of afforestation in arid and semi-arid areas and it can 
therefore be recommended to the practitioners.
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Budući da je stres izazvan nedostatkom vode najveća prepreka uspešnom pošumljavanju u sušnim područjima, potrebno je preduzeti 
mere kako bi se taj stres smanjio. Priprema lokacije i promena vrsta nisu dali dovoljnu korist, te je potrebno isprobati alternativne 
metode sa upotrebom mikorize. Cilj ove studije je upotreba klijanaca ruske masline (Elaeagnus angustifolia) koji su otporni na ne-
dostatak vode i utvrđivanje efekta mikorize na vodni potencijal klijanaca u uslovima stresa. Zbog toga su određivani vodeni potencijali 
sadnica inokuliranih arbuskularnim mikoriznim gljivicama. Smanjenje sadržaja vode u tlu uzrokovalo je smanjenje vodnog potencija-
la sadnica u svim tretmanima. Mikorizacija je smanjila stres povećavajući vodeni potencijal klijanaca u uslovima suše i tako povećala 
otpornost klijanaca prema stresu. 

Ključne reči: mikoriza; vodni potencijal; vodeni stres; Elaeagnus angustifolia

Varijacije u vodnom potencijalu ksilema stabla izdanaka ruske masline 
(Elaeagnus angustifolia) tretiranih mikorizalnim gljivama u uslovima stresa

Bulent Toprak

REZIME
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