Evaluation of phenolic content and antioxidant capacity in some medicinal herbs cultivated in Iran

Zaynab DERAKHSHANI1*, Abbas HASSANI1, Alireza PIRZAD2, Rahim ABDOLLAHI1 and Mahdie DALKANI1

1 Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Urmia University, Urmia, Iran

ABSTRACT: In this study the total phenolic content and antioxidant capacity of various medicinal plant species belonging to the Lamiaceae family cultivated in the climatic conditions of Iran were determined and compared. The phenolic content and antioxidant capacity of flowers and leaves of some Lamiaceae species were also compared with those of several non-Lamiaceae species. Total phenolic content and antioxidant capacity of the selected herbs ranged from 6.87 to 33.22 mg GAE/g fresh weight and 0.59 to 3.70 mmol Fe/100 g fresh weight, respectively. The highest phenolic content and antioxidant capacity was found in rosemary (Rosmarinus officinalis) and the lowest contents were found in flower-of-an-hour (Hibiscus trionum). Although antioxidant capacity and phenolic content in the selected Lamiaceae herbs varied, all of them had useful levels of phenolic compounds and demonstrated considerable antioxidant capacity. It seems that consumption of these herbs could be useful to decrease the damage caused by reactive oxygen species and reduce the risk of diseases. Furthermore, the results showed that flowers as well as leaves of the selected herbs could have a high phenolic content and antioxidant capacity. In this study, Lamiaceae herbs were also shown to have higher amounts of phenolic compounds and antioxidants compared with herbs belonging to other families.

Key words: total phenolic content, antioxidant capacity, Lamiaceae

INTRODUCTION

Active oxygen and nitrogen species can damage the human body. Unbalanced over-production of reactive oxygen species can lead to oxidative stress (Yildirim et al. 2000; Gulcin et al. 2002; Ellnain-Wojtaszek et al. 2003). The sources for formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) may be internal or external. Endogenous sources of reactive species generation are mainly normal aerobic respiration, stimulated polymorphonuclear leukocytes and macrophages and peroxisomes (Fridovich 1986; Halliwell 1994) and exogenous sources include tobacco smoke, ionizing radiation, organic solvents and pesticides (Halliwell & Gutteridge 1989; Davies 1995; Papas 1996)

Damage to lipids, proteins, enzymes, nucleic acids and ultimately, cells and tissues is caused by the overproduction of reactive species leading to aging and a wide range of degenerative diseases including inflammation, cancer, atherosclerosis, diabetes, liver injury, Alzheimer, Parkinson, and coronary heart pathologies, among others (Duan et al. 2006).

Antioxidant systems are known to scavenge these reactive species. Medicinal plants can be rich sources of antioxidants, especially phenolic compounds such as flavonoids, tannins and phenolic acids and antioxidant vitamins, including ascorbic acid, tocopherol, β-carotene
and anthocyanins (Salah et al. 1995; Saskia et al. 1996).

The Lamiaceae family consists of approximately 200 genera with a cosmopolitan distribution. This family is known in Iran by 46 genera and 410 species and subspecies. Many members of this family have traditional and medicinal uses and have been used in folk medicine for many years. They are also applied as culinary and ornamental plants. Lamiaceae species are mainly used for ailments related to the digestive system, especially flatulence and dyspepsia. This plant is also used as a reconstituent and for the treatment of infections (Naghibi et al., 2005).

The aim of this research was to determine and compare the total phenolic content (TPC) and antioxidant capacity in extracts of some medicinal plants belonging to the Lamiaceae family from Iran, and to compare them with extracts from several non-Labiatae species.

MATERIAL AND METHODS

Herb sample collection. Selected herbs were collected in August from Urmia university (Northwest of Iran) garden. Selected herbs belonging to Lamiaceae family were Rosmarinus officinalis, Lavandula angustifolia, Mentha aquatica, Mentha ×piperita, Mentha spicata, Mentha pulegium, Salvia officinalis, Salvia sclarea, Salvia nemorosa, Melissa officinalis, Ocimum basilicum, Origanum vulgare, Thymus vulgaris, Thymus kotschyanus and Agastache foeniculum. In addition, the phenolic content and antioxidant capacity of flowers and leaves of Mentha pulegium, Salvia nemorosa, Ocimum basilicum, Polygonum aviculare (Polygonaceae), Hibiscus trionum (Malvaceae), Tanacetum balsamita (Asteraceae), Cichorium intybus (Asteraceae) and Borago officinalis (Boraginaceae) were evaluated.

Total phenolic content determination. Total phenolics of the methanol extracts were determined colorimetrically using Folin-Ciocalteu reagent (Merck) as described by Seevers & Daly (1970). A standard curve was prepared using different concentrations of gallic acid (Merck) and results were expressed as mg gallic acid equivalent (GAE)/g fresh weight basis. Briefly, 0.5 ml of the methanol extracts were dissolved in 7 ml deionized water and 0.5 ml of Folin-Ciocalteu reagent were added to them in a 10 ml volumetric flask. The contents were mixed and allowed to stand for 5-8 min at room temperature. One ml of a sodium carbonate solution (75 g/l; Na₂CO₃) was then added, followed by bringing the volume to 10 ml with the addition of distilled water. Solutions were mixed and allowed to stand at room temperature for 1 h prior to the determination of total phenol concentration using a spectrophotometer (Pharmacia LKB, Novaspec II) at 725 nm.

Total antioxidant capacity determination. Antioxidant capacity was measured using the Ferric Reducing/Antioxidant Power (FRAP) assay (Benzie & Strain 1996). FRAP assay measures the change in absorbance at 593 nm because of the formation of a blue colored Fe²⁺-tripiryldltriazine compound from colorless oxidized Fe³⁺ form by the action of electron donating antioxidants. The FRAP reagent was prepared by mixing 300 mM acetate buffer (3.1 g sodium acetate + 16 ml glacial acetic acid, made up to 1 l using distilled water; pH=3.6), 10 mM tripiryldltriazine (TPTZ, Sigma-Aldrich) and 20 mM FeCl₃·6H₂O in a ratio of 10:1:1 and 3 ml of prepared reagent was poured into test tubes. A total of 100 μl of sample and 300 μl of distilled water was then added to the same test tubes and incubated at 37 °C for 4 min. Absorbance was measured at 593 nm. FeSO₄·7H₂O was used as the standard and results were expressed in mmol Fe/100 g fresh weight.

Statistical analysis. Data were subjected to analysis of variance. The least significant difference (LSD) test was used for comparison of means (P = 0.05) and data were expressed as mean ± SE. Pearson’s correlation test was used to determine the correlations amongst variables.

RESULTS

Significant differences were found amongst the selected herbs for their total phenolic contents and total antioxidant capacities (table 1). Although, there were various values of antioxidant capacity and TPC in selected herbs, all of them have degrees of phenolic compounds and antioxidant potential (table 1, figure 1 and figure 2).

The FRAP levels and TPC of selected herbs ranged from 0.59 to 3.70 mmol Fe/100 g fresh weight and 6.87 to 33.22 mg GAE/g fresh weight, respectively. The highest antioxidant capacity was observed for rosemary (3.70 mmol Fe/100 g fresh weight) followed by orange mint (3.68 mmol Fe/100 g fresh weight) and garden thyme (3.47 mmol Fe/100 g fresh weight). The highest TPC was also found in rosemary, (33.22 mg GAE/g fresh weight), followed by knotgrass (31.25 mg GAE/g fresh weight) and oregano (29.67 mg GAE/g fresh weight). The extract of flower-of-an-hour exhibited the lowest TPC (6.87 mg GAE/g fresh weight) and antioxidant capacity (0.59 mmol Fe/100 g fresh weight).

In the present study, among mint species, spearmint had the highest TPC, though there was no significant difference between spearmint and peppermint. Orange mint had the highest FRAP level of the mint species,
Table 1. Total phenolic content and antioxidant capacity in various extracts of selected herbs

<table>
<thead>
<tr>
<th>Total antioxidant power* (mmol Fe/100 g of fresh weight)</th>
<th>total phenolicsb (mg of GAE/g of fresh weight)</th>
<th>botanical name</th>
<th>common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.70±0.11</td>
<td>33.22±1.28</td>
<td>Rosmarinus officinalis</td>
<td>rosemary</td>
</tr>
<tr>
<td>2.87±0.29</td>
<td>13.31±2.15</td>
<td>Lavandula angustifolia</td>
<td>lavender</td>
</tr>
<tr>
<td>3.68±0.12</td>
<td>11.26±0.99</td>
<td>Mentha aquatica</td>
<td>orange mint</td>
</tr>
<tr>
<td>2.50±0.06</td>
<td>19.46±0.35</td>
<td>Mentha ×piperita</td>
<td>peppermint</td>
</tr>
<tr>
<td>3.35±0.53</td>
<td>22.47±1.13</td>
<td>Mentha spicata</td>
<td>spearmint</td>
</tr>
<tr>
<td>2.94±0.05</td>
<td>15.95±0.52</td>
<td>Mentha pulegium</td>
<td>pennyroyal</td>
</tr>
<tr>
<td>2.49±0.36</td>
<td>14.53±0.33</td>
<td>Salvia officinalis</td>
<td>garden sage</td>
</tr>
<tr>
<td>2.92±0.02</td>
<td>11.95±1.05</td>
<td>Salvia nemorosa</td>
<td>meadow sage</td>
</tr>
<tr>
<td>1.85±0.05</td>
<td>16.24±0.30</td>
<td>Salvia sclarea</td>
<td>mediterranean sage</td>
</tr>
<tr>
<td>2.56±0.22</td>
<td>22.49±1.99</td>
<td>Melissa officinalis</td>
<td>lemon balm</td>
</tr>
<tr>
<td>2.52±0.37</td>
<td>25.69±2.41</td>
<td>Ocimum basilicum</td>
<td>sweet basil</td>
</tr>
<tr>
<td>2.85±0.06</td>
<td>29.67±1.04</td>
<td>Origanum vulgare</td>
<td>greek mountain oregano</td>
</tr>
<tr>
<td>3.47±0.38</td>
<td>26.27±0.32</td>
<td>Thymus vulgaris</td>
<td>garden thyme</td>
</tr>
<tr>
<td>2.94±0.37</td>
<td>16.12±2.09</td>
<td>Thymus kotschyanus</td>
<td>thyme</td>
</tr>
<tr>
<td>1.15±0.32</td>
<td>7.19±0.27</td>
<td>Agastache foeniculum</td>
<td>anise hyssop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mentha pulegium (leaf)</td>
<td></td>
</tr>
<tr>
<td>2.94±0.05</td>
<td>15.95±0.52</td>
<td>Mentha pulegium (flower)</td>
<td></td>
</tr>
<tr>
<td>3.35±0.08</td>
<td>17.88±0.81</td>
<td>Mentha pulegium (leaf)</td>
<td></td>
</tr>
<tr>
<td>2.92±0.02</td>
<td>11.96±1.05</td>
<td>Salvia nemorosa (flower)</td>
<td></td>
</tr>
<tr>
<td>2.66±0.31</td>
<td>8.55±0.57</td>
<td>Salvia nemorosa (leaf)</td>
<td></td>
</tr>
<tr>
<td>2.52±0.37</td>
<td>25.69±2.41</td>
<td>Ocimum basilicum (flower)</td>
<td></td>
</tr>
<tr>
<td>2.89±0.18</td>
<td>15.15±0.95</td>
<td>Ocimum basilicum (leaf)</td>
<td></td>
</tr>
<tr>
<td>2.01±0.25</td>
<td>31.25±1.56</td>
<td>Polygonum aviculare</td>
<td>knotgrass (leaf)</td>
</tr>
<tr>
<td>1.75±0.17</td>
<td>25.41±1.07</td>
<td>Polygonum aviculare</td>
<td>knotgrass (flower)</td>
</tr>
<tr>
<td>0.59±0.23</td>
<td>6.87±0.30</td>
<td>Hibiscus trionum</td>
<td>flower-of-an-hour (leaf)</td>
</tr>
<tr>
<td>0.60±0.25</td>
<td>8.94±0.87</td>
<td>Hibiscus trionum</td>
<td>flower-of-an-hour (flower)</td>
</tr>
<tr>
<td>0.74±0.07</td>
<td>14.82±0.93</td>
<td>Tanacetum balsamita</td>
<td>comfrey (leaf)</td>
</tr>
<tr>
<td>0.64±0.20</td>
<td>12.52±1.14</td>
<td>Tanacetum balsamita</td>
<td>comfrey (flower)</td>
</tr>
<tr>
<td>1.07±0.15</td>
<td>10.47±0.54</td>
<td>Cichorium intybus</td>
<td>chicory (leaf)common</td>
</tr>
<tr>
<td>1.03±0.23</td>
<td>10.6±0.51</td>
<td>Cichorium intybus</td>
<td>common chicory (flower)</td>
</tr>
<tr>
<td>0.87±0.13</td>
<td>8.96±0.79</td>
<td>Borago officinalis</td>
<td>common borage (leaf)</td>
</tr>
<tr>
<td>0.86±0.09</td>
<td>9.62±0.63</td>
<td>Borago officinalis</td>
<td>common borage (flower)</td>
</tr>
</tbody>
</table>

0.28 3.08 LSD at 5%

* Data expressed as mean ± SEM. b Data expressed as milligrams of gallic acid (GAE) equivalents per gram of fresh weight.

Athough not significantly higher than that of spearmint (table 1).

Among three species of salvia, mediterranean sage had the highest TPC and meadow sage showed the highest FRAP level (table 1).

Comparing the two *Thymus* species showed that TPC and FRAP levels of garden thyme were higher than those of thyme (table 1).

Phenolics and antioxidant power of flowers and leaves were also compared in several herbs belonging to Lamiaceae and non-Lamiaceae (table 1 and figure 3. Phenolic content and antioxidant capacity were sometimes higher in flowers and sometimes higher in leaves (table 1, figure 1 and figure 2).
A positive correlation ($r^2=0.52$, $p\leq0.0001$) was found between phenolic content and antioxidant capacity of the selected herbs.

DISCUSSION

The Lamiaceae family consists of approximately 200 genera with a cosmopolitan distribution. This family is known in Iran by 46 genera and 410 species and subspecies (Naghibi et al. 2005).

Most genera of the Lamiaceae are rich sources of terpenoids and they also contain a considerable amount of various iridoid glycosides, flavonoids, and phenolic acids such as rosmarinic acid and other phenolic compounds (Naghibi et al. 2005; Valant-Vetschera et al. 2003).

In the present study, selected herbs of the Lamiaceae family demonstrated significant variation in the content of phenolic compounds and antioxidant potential and this is in accordance with previous studies on antioxidant properties of some Lamiaceae plants (Zheng & Wang 2001; Ozgen et al. 2006; Nickavar et al. 2008).

Hall & Cuppert (1997) reported that rosmarinic acid is known as the main component in Lamiaceae plants with a potent antioxidant activity and thus, the observed antioxidant properties of Lamiaceae plants could depend strongly on rosmarinic acid.

Peng et al. (2005) showed rosemary to have the highest antioxidant activity. Several phenolic compounds have been identified from rosemary, including rosmanol, rosmarinic acid, naringin, cirsimaritin and carnosic acid (Zheng & Wang 2001).

The antioxidant potential of mints greatly depends on the presence of phenolics. The major phenolic constituents of mints are caffeic acid derivatives, especially rosmarinic acid and flavonoids, including flavones, flavanones and their glycosidic forms (Gudeon & Pasquier 1994; Janicsak et al. 1999; Areias et al. 2001). Luteolin, apigenin eriodictyol, hesperetin and their glycosides have been shown to be major flavonoids in the genus Mentha (Gudeon & Pasquier 1994; Areias et al. 2001).

Salvia species have uses in traditional medicine and they are known as a rich source of flavonoids and phenolic acids. Their main flavonoids are flavones, flavonols, and their glycosides (Lu & Foo 2002). The genus Thymus contains flavonoids (luteolin, apigenin, eryodictiol, naringenin, diosmetin, and their glycosides) and phenolic acids (rosmarinic acid, 6-hydroxyrosmarinic acid, caffeic acid, 6-hydroxycaffeic acid, protocatechuic acid, chlorogenic acid, syringic acid, p-coumaric acid, 3,5-dicaffeoylquinic acid, gentisic acid, p-hydroxybenzoic acid and vanillic acid) (Voirin et al. 1985; Miura & Nakatani 1989).

Oregano species have high amounts of rosmarinic acid and other hydroxycinnamic acid compounds which have been shown to possess potent antioxidant activity (Larson 1988; Chen & Ho 1997).

Some phenolic compounds have been identified from

Figure 1. Total phenolic content of selected herbs, Mean ± SEM, ($n = 3$)

Figure 2. Total antioxidant capacity of selected herbs, Mean ± SEM, ($n = 3$)

Melissa officinalis such as caffeic acid, protocatechuic acid, rosmarinic acid, luteolin-7-glucoside and rhamnazin (Thieme & Kitze 1973).

Rosmarinic acid, o-coumaric acid, apigenin-7-O-glucoside, coumarin, herniarin, luteolin, and apigenin have been shown to be lavender phenolic compounds (Areias et al., 2001).

The main phenolic compounds of sweet basil are rosmarinic acid, catechol, cinnamyl and caffeoyl derivatives, caffeic and ferulic acids, carnosic acid, catechin and apigenin (Jayasinghe et al. 2003).

Some phenolic compounds of knotgrass, belonging to the Polygonaceae, have been identified to be flavonoids and tannins (Samsam Shariat 2007).

Furthermore, some phenolic constituents evaluated in costmary and common chicory (Asteraceae) were tannins and different flavonoids (Samsam Shariat 2007).

Common borage has been shown to contain phenolic acids, especially protocatechuic acid and ferulic acid and tannins (Samsam Shariat 2007; Zadernowsk et al. 2002).

There appears to be no published information about phenolic compounds of anise hyssop and flower-of-an-hour.

TPC and FRAP levels of selected herbs showed some heterogeneities and this may be because phenolic compounds possess different antioxidant capacities (Zheng & Wang 2001).

Many different compounds are known to have distinct activities (Larson 1988). Therefore other compounds, without a phenolic structure may be in part responsible for the antioxidant properties of these plants (Nickavar et al. 2008).

The results showed that the selected herbs belonging to Lamiaceae family were rich in phenolics and demonstrated considerable antioxidant capacity, despite varying significantly in antioxidant capacity and TPC. Members of the Lamiaceae had relatively higher phenolic contents and antioxidant capacities than other selected herbs. Moreover, the results showed that both the flowers and leaves of selected herbs can include desirable levels of phenols and antioxidant capacity. Therefore, consumption of these herbs (flowers and leaves) as reactive species scavengers could be useful to suppress oxidative damage and reduce the risk of diseases. It was also shown that a major portion of the antioxidant capacity of these herbs was due to phenolic compounds.

REFERENCES

REZIME

Održivanje sastava fenola i antioksidativnog kapaciteta nekih lekovitih biljaka iz Irana

Zaynab DERAKHSHANI, Abbas HASSANI, Alireza PIRZAD, Rahim ABDOLLAHI, Mahdie DALKANI

U ovom radu određen je sadržaj fenola nekih lekovitih biljaka iz Irana kao i njihov antioksidativni kapacitet. Poreden je fenolni sadržaj cvetova i listova različitih biljaka. Ukupni sadržaj fenola kod ispitivanih vrsta varira od 6.87 do 33.22 mg GAE/g sveže mase dok je antioksidativni kapacitet varirao od 0.59 do 3.70 mmol Fe/100 g sveže mase. Najviši sadržaj fenola i antioksidativni kapacitet imaju naročito biljke iz porodice Lamiaceae. Rezultati pokazuju jednako dobar antioksidativni kapacitet i kod latica, ne samo listova.

Ključne reči: ukupni sadržaj fenola, antioksidativni kapacitet, Lamiaceae